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Abstrad We study the mean-field equations for the 3~ random field king model. We discuss 
the phase diagram of Ihe model, and we address the problem of finding if such equafions admit 
more than one solution. We find two M e m t  critical valuer of the temperature T one where 
the magnetization takw a non-zero expectation value, and one where we start to have more 
than one solution to the mean-field equation. We find that. inside a given solution, ulere are no 
divergent wrrelation lengths. 

1. Introduction 

The random field Ising model (RFIM) (see for example [ 1-31) is waiting for pieces of new 
understanding and further clarifications of the relevant physical mechanisms. 

Let us start by sketching the theoretical situation. For a certain time it was hoped that 
dimensional reduction could be the appropriate method of computing the critical behaviour 
of a ferromagnet in the presence of a random magnetic field. It was proven in [4] that in 
perturbation theory the sum of the most divergent diagrams close to the phase transition for 
a random field model in dimension D coincides with that of a ferromagnetic theory, without 
random field, in the reduced dimension d = D - 2. The terms that are neglected are less 
singular than the leading ones by a factor f being as usual the correlation length. This 
result suggests that all the exponents of the random field system coincide with those of the 
corresponding ferromagnetic system in D - 2 dimensions. 

Clearly this result cannot be correct. Simple physical arguments (confirmed by a rigorous 
analysis [ 5 ] )  lead to the conclusion that the lower critical dimension is 2, not 3, as implied 
by dimensional analysis. The deep reason for this failure can be found following the non- 
perturbative analysis of [3,6]. Let us summarize the main results. 

We assume that the system is described by the following Hamiltonian density, which is 
a functional of the order parameter $ ( x )  
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where the random field h(x)  is Gaussian uncorrelated white noise with variance gS(x - y ) ,  
and g parametrizes the strength of the random field. 

The stationary points of H can be found by solving the corresponding mean-field 
equations 

- A@ + V’(@) = h ( x ) .  (2)  

When these equations admit only one solution, as happens for sufficiently large 
temperature, it is natural to introduce the correlation functions 

where by the long bar we denote the average over all the realizations of the random magnetic 
fields. 

These two correlation functions are the mean-field approximation to (@(x))(@(O)) and 
(@(x)@(O)),  respectively. One then finds that C(x)  is proportional to the same correlation 
function of the pure system in dimensions d = D - 2. The functions G(x)  and C(x) are 
related one to the other, in Fourier space one finds that 

The function G(k)  is the same as for the pure system in dimension d = D - 2 (dimensional 
reduction works in configuration space with the function C ,  and in momentum space with 
the function G). 

When (2) admits more than one solution we must assign a weight to each solution in 
order to compute expectation values. This makes life more complicated. If we label by a 
different solutions, and by w, the relative weight we can write 

By using different prescriptions for the weights w. we can obtain different results. This 
is especially true if the number of different solutions of the mean-field equations increases 
with the volume. 

Dimensional reduction can still hold, but with a crazy choice of the weights 

signdet[-A + V”(@#)] 
ZW 

w, = 
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where Z,,, is such that E, w, = 1. Here the Morse theorem states that Z,,, = 1. 
A physically motivated choice would be 

where (Y runs over all the solutions of the mean-field equations; minima, maxima and saddle 
points all together. The strange looking unusual factor signdet[-A + V"(@e)l is needed to 
keep the continuity of Z,,, when new solutions appear. 

It could be argued that the energies of the minima are so much smaller than the energies 
of the saddle points and maxima that we can simply write 

and keep the sum restricted only to the minima. In the rest of this paper we follow this 
second strategy. 

It is possible that this modified mean-field theory gives the correct results (as is implicit 
in the work of [7]) and that the failure of dimensional reduction is simply related to the 
existence of many solutions with different energy [3,6,8,9]. 

Our aim is here to investigate numerically this improved mean-field approximation, to 
make its predictions explicit, and eventually to compare them with Monte Carlo simulations. 
We have been motivated to start this investigation by an interesting paper [lo], in which 
it was suggested that replica symmetry is already broken at the point ferromagnetic phase 
transition. For results obtained both in the mean-field framework and with a Monte Carlo 
and a T = 0 optimization approach. see [7,11,12]. 

In this paper we limit ourselves to the study of two particular solutions of the mean- 
fields equations, which we call @+ and $-. They are such that for any solution & (and 
for any x )  the relation & ( x )  < @&) < @+(x) holds. The existence of two solutions 
with this propelty (in the high-temperature phase they coincide) follows from convexity 
arguments [ 131. We call them " a l  mean-field solutions. 

2. Lattice mean-field equations 

We consider the random field Ising model (RFW) with Ising type (Z2) variables defined on 
a 3D simple cubic lattice. We study the solutions of its mean-field equations. 

With i we denote the triplet of integers ( x ,  y.  z), which characterize the lattice sites. We 
will consider configurations of the random field [hi .5';'FI], where the quenched random 
variables 0, can take the values f l  with probability $, and we have chosen the absolute 
value of the field, 'FI, to be 1.5. Such a choice for 'H was meant to allow the critical 
temperature Tc to have a non-negligible shift from 'Fe in the pure model, and simultaneously 
not to be large enough to allow the transition to become first order [l]. 

In the mean-field approximation one introduces local magnetization variables m;, which 
play the same role as @ ( x )  in the continuum formalism. The total free energy is written as 
a function of the local magnetization, and the condition for the free energy being stationary 
is the usual mean-field equation 

mi = tanh(B(Dm; + h i ) )  

where with Dm; we define the lattice sum over the six first-neighbour variables. 
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If this equation admits only one solution there is no ambiguity. If, on the other hand, 
there are many solutions, one has to weight (according to the previous discussion) different 
solutions with a weight proportional to the exponential of minus the free energy (multiplied 

Our ideal goal is to look for all solutions of this equation, which correspond to local 
minima of the free energy, but this is an awful task when the number of solutions is very 
large, as happens at low T. Here we have just looked for the solutions with higher, positive 
and negative, magnetization, (m+ and m-)  using a simple iterative scheme. We have 
started the iterative procedure used to solve (9) from the two initial conditions mi = m, 
and mi = -ms. Although a completely safe procedure would start from ms = 1. it is more 
convenient (and it does not change the results) to take a value for m, slightly smaller than 
one. The appropriate value of m ,  depends on the temperature; in our simulations we have 
taken m, = 0.6. 

In the high T regime both these runs converge to the same (unique) solution. In a 
broken phase they will tend to different solutions with average magnetization of opposite 
signs. This procedure should be good enough to localize the temperature T below which 
the solution of (9) is not unique, and to give relevant quantitative hints about the structure 
of the phase transition. 

We label the solutions of the mean-field equations, in a given realization of the magnetic 
field, by'the index a; given the pattem of our search a is limited to take only one or two 
values. For each realization of the magnetic field the index a belongs to the set A (which 
can be, in our simulation, constituted of one or two solutions). The average over different 
field samples (which we denote by a bar: we denote the average over different solutions by 
(.)) is performed by having A running from 1 to NA. 

In each solution a (characterized by the V 3 L3 values of the local magnetization mi) 
we compute the relevant observables. We define the total magnetization density 

by 14). 

and the sum of the squared local variables 

We define the energy density 

the entropy density 

I 

and the total free energy as 

BF' = V@E' - 5'"). 

The weight we associated with each solution a is given by 
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3. Numerical results for local quantities 

Here we present numerical results for systems of size up to 48 in a range of ,3 that goes 
from 1.1 to 1.5 (we will always give in units of the critical ,3 at zero random field, i.e. i). 
We have analysed 600 random field samples for the IZ3 lattice, 400 fo: the 2a3 lattice, 200 
for the 3ii3 lattice and 30 for the 4g3 lattice. 

In this section we will discuss the behaviour of local quantities (i.e. those objects that can 
easily be constructed from the magnetization), while in the next section we will concentrate 
OUT attention on the response functions, which must be computed by inverting the lattice 
equivalent of (-A + V"($)), a highly non-local operation. 

Figure 1. W 2  as a function of 0. Dotted curve for the 
lZ3 lattice, chain curve for the X3 laaice, bmkn curve 
for the 3fi3 lanice and full curve for &e e3 ~ a a i c ~  

F p r e  2 As in figure I. but m k .  

A very interesting quantity is 

This quantity is different from 1 when the mean-field equations admit more than one 
solution: roughly speaking W-2 is the average number of relevant solutions. We display 
the results for Wz as a function of ,3 in figure 1. We see that W2 becomes significantly 
different from 1 only at ,!J greater than 1.2. We see a change in regime at this beta, which 
we denote by 

Another quantity that is interesting to measure is the maximal magnetization m&, defined 
as m&(m")*. In figure 2 we show the p dependence of m& for different lattice sizes. We 
see a transition from an asymptotic zem value of m& to a non-zero value around p = 1.35. 
The transition becomes sharper by increasing the size of the lattice. We also see a change 
in regime at this new value of ,3. which we denote by pz. 

A more detailed understanding can be obtained by considering the correlation functions 
of the local magnetization. To this end we define, for each solution (I, the magnetization 
on a 2-plane as 
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M;(A) and M;(A) are defined in an analogous way. We defme the zero @i-)momenhun 
magnetization-magnetization correlation function for the solution (Y as 

The total correlation function at distance A, averaged over N A  samples, is defined as 

and we denote by Cc(A) its connected part. 
At first order in perturbation theory in the strength of the random field [3,4,61 C&) 

has (as we have discussed before) a double pole in Fourier space. It has also been shown 
that this form retains its validity at all orders in perturbation theory. and should be exact in 
the region where supersymmetric considerations hold. In x space this leads to 

C(h) N A ( l  + A/eQ)e-A'"o + B (20) 

which defines the correlation length e"'. 

i " " ' " ' " ' ' " " ' l  

B 1/L 

Fwre 3. The inverse correlation length m l f t ( q  
as a hnction of 

F b r e  4. The maximum Correlation length &'' BS a 
function of the inverse linear sire of the system for different lanice sizes. 

In figure 3 we plot the inverse correlation length as a function of p. We have used a 
global fit to C(A) (which has determined e<c1, A and B by assuming a functional dependence 
that takes in account the periodic boundary conditions). In all cases we have computed 
the statistical errors by using a standard jack-knife procedure. We have also computed A 
dependent correlation length estimators. By averaging them in the plateau region we have 
obtained another estimate of e'c), which tums out to be completely compatible with the one 
from the global fits. The fits turn out to be of very good quality, confirming the approximate 
validity of the form (20). 
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Figure 5. The constant coefficient B from the global fit to C(X) as a function of B.  

The correlation length of figure 3 has quite a broad maximum close to ,9 = 1.35. 6“) 
close to its peak increases when going from L = 12 to L = 24, but for larger lattices it 
remains constant. 
h figure 4 we plot the maximum value of the correlation length, :,!o, as a function of 

1/L, to stress the saturation that occurs for large L. The asymptotic $kc) is of order 4.5. 
It is rather consistent that the correlation length becomes independent of the sue for sizes 
three to four times larger than the correlation length. 

In figure 5 we plot the coefficient B (i.e. the constant asymptotic value of the correlation 
function) computed from the fit to C(h) as a function of 8. For large volumes B should 
become identical to m2 (which, in our analysis, turns out to be very similar to mL), but its 
finite-size corrections are smaller, especially in the high-temperature region, where B and 
m& are asymptotically zero. B Seems to take a non-zero expectation value starting from 
82 Y 1.35. This method gives a very good estimate of the value of the critical temperature 
where m& becomes significantly different from zero. 

In the region where m& is zem all different solutions of the mean-field equations should 
become locally equal in the infinite volume limit, or more precisely their absolute difference 
should on average go to zero with the volume. 

It is natural to ask if these values of ,9 do correspond in the thermodynamic limit to real 
phase transitions. The quantity W2 becomes different from zero as soon as there exists a 
realization of the magnetic field that adrnits two solutions. An explicit computation shows 
that if h(i)  = (-l)”+Y+’ one finds two solutions when f i  2 ,%.j ‘v I.Ol5t. Simple-minded 
arguments (which generalize the original Griffiths theorem for random diluted magnetic 
systems) suggest that the free energy is Cm but not analytic at ,%.j 

For ,9 z , 9 ~  there exist realizations of the magnetic field for which at least two 
solutions exist These field configurations are special, and their measure is small. We 
expect therefore that Wz is different from 1, mathematically speaking, for ,9 2 ~ J G ,  but it 
becomes significantly different from 1 only at ,9 2 ,91. Similar arguments can be performed 
for 82. The non-vanishing of m& for ,9 2 , 9 ~  is a pathology that arises from our choice of 
considering only the maximal solution. If we consider the physically relevant quantity, i.e. 

t An approximate formula valid for small H is & = 1 +H2/144+O(H‘) .  



it should become different from zero only at values of ,S much higher than ,SG. The fact 
that the correlation length remains finite and somewhat small near 8 2  may be taken as an 
indication that the true ferromagnetic transition at which m2 becomes different from zero is 
at higher values of ,8. 

The situation would be clarified if we could compute the full expression for C(x), 
summing over all the solutions, but we have left this task for a future work. 

4. Numerical results for the response functions 

To compute the correlation functions in the mean-field approach we must use the tluctuation- 
dissipation theorem. We are therefore led to consider the susceptibility function X ; J ,  which 
is equal to the derivative of the magnetization mi with respect to the field hj (for sake 
of typographical clarity in the following we will omit the solution label a). If there is a 
single stable state we have to perturb the unique solution of (9). In this way we obtain the 
equation 

xi.] = ~ ( 1  - m;)(Dxi,j + &,,). (22) 

This is a linear sparse equation that can be solved by using standard iterative techniques. 

so we compute the Green functions gi E xi.0 by setting j = 0 and iterating the relation 
The computation of x for all the values of i and j would be extremely time consuming, 

gi = 8(1 - m;)(Dg; + 6i.0). (23) 

We also compute the susceptibility x = ( I /  V )  xi . j  by iterating 

The name overlap susceptibility arises from the following considerations. Let us 
consider two replicas (U and r )  of the same system whose dynamics is determined by a 
Hamiltonian that contains the usual one system contribution plus a direct coupling between 
the two systems. The total Hamiltonian is 

N [ U I  + ~ [ r ]  - E  C u i r ; .  (26) 
i 
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This construction is common in the study of other disordered systems like spin glasses. 
The quantity xq coincides with aq/a6, evaluated at E = 0. where 9 is the overlap density, 
ie. ( l / V ) x i u i r , .  

In the interesting case in which the mean-field equations admit many solutions a we 
follow the simplest procedure of weighting each of these with the weight w" (recall that 
we are taking into account only the two maximal solutions). In this way we obtain only 
one tenn of the two that form the full susceptibility. It is easy to check that the response 
function 

is given by 

The second term (in brackets), which arises in the presence of many solutions, is likely to 
be dominant near the critical point, as will shall see below. It may be convenient to call 
the first the diagonal contribution, and the second one the off-diagonal contribution. 

Figure 6. As in figure I ,  but x, the diagonal 
conuibution to the susceptibility. 

Figure 7. 
aonuibution to the overlap susceptibiiity. 

As in figure 1. but x9, ulc diagonal 

We have computed the diagonal contributions ,y and xq with the results shown in 
figures 6 and 7. It is impressive that x has a sharp maximum close to 61,  while xq has a 
peak at much higher beta (slightly above a) and does not show any significant anomaly at 
@ I .  These two peaks are volume independent for large volume. The correctness of this result 
is confirmed by the direct analysis of the correlation length corresponding to x ,  e;'). which 
we show in figure 8. 6;') never becomes large in the whole region and for B 6 @ I  essentially 
coincides with c(=), the correlation length we have discussed in the previous section. We 
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Figure 8. As in figure I .  but 6;’). Figure 9. As in figure 1, but e?’. 

find that the supersymmetry prediction of equality of the two correlation lengths is correct 
in the region j3 6 j3, where only one solution is present. 

We have also considered the correlation lengths defined by taking the nth power of 
the zero bi-momentum correlation functions that give ci’:”. and by looking at their decay. 
They do not present a significant difference (once divided by n) from the one obtained for 
n = 1. In figure 9 we show the correlation length with n = 2 (which has the smallest 
statistical error), which can be compared with the n = 1 result of figure 8. The two sets of 
curves are very similar. 

Evaluating at least some approximation to the off-diagonal contribution to the 
susceptibility is essential. We have done it by only using our maximal solutions. There is 
a large statistical error. In the low temperature region we expect that the offdiagonal 
contribution is proportional to N ’ l 2 ,  this contribution arising from a few exceptional 
configurations of the magnetic field that have two solutions with opposite magnetization with 
similar weight. This event happens with a probability of order l/N’/’: the corresponding 
offdiagonal susceptibility is of order N,  so that the net contribution to the susceptibility 
coming from these exceptional configurations is proportional to N ’ P .  In this region the 
offdiagonal susceptibility is dramatically increasing, showing the trend to diverge about 
j3 Y 1.30. Anyhow there is no convincing argument that implies that the restriction to the 
maximal solution should be a good approximation, apart from very close to B1. where only 
two stable solutions are expected. 

A full computation (including all the solutions) of both the diagonal and the nondiagonal 
contribution to the susceptibility would be extremely interesting. 

5. Conclusions 

The existence of many solutions to the mean-field equations turns out to be a crucial 
phenomenon; inside a single solution (at least of the maximal type) one does not see 
any sign of the presence of a divergent correlation length. The critical behaviour of the 
susceptibility and of the correlation length in a 3D RFIM is dominated by the effects of the 
presence of many solutions. The supersymmetric predictions start to fail exactly at the point 
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where one finds more than one solution of the mean-field equations. It is not surprising that 
dimensional reduction, which completely misses the existence of more than one solution, 
gives unreliable exponents at the critical point 

It is reasonable that each solution of the mean-field equation does correspond to a valley 
for the energy in configuration space$. In this case the dynamics of Monte Carlo simulations 
of a real system, also at temperature slightly above the critical one, is likely to be dominated 
by thermally activated tunnelling among different valleys, and we expect it to be a slow 
process. 
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